「都市の防災と再生研究」

再生砕石や廃棄鉄道用バラストを活用したプレパックドコンクリートの検討

AH15019 大塚 朝陽 指導教員 伊代田 岳史

1.背景と目的

近年,再生骨材や建設廃材の有効活用の手段として, プレパックドコンクリートが再び注目を集めている. プレパックドコンクリートとは、図1の様に型枠内に 粗骨材を敷き詰めた状態から, 無収縮グラウト材 (モル タル)を型枠に流し込み、骨材間をグラウト材で充填す る, 従来のコンクリートとは異なる方法で施工するコ ンクリートである. 東日本大震災の復旧・復興工事でも 採用され、その粗骨材として震災コンクリートガラが 用いられた実績もある. しかし, 2012 年度版コンクリ ート標準示方書内に掲載されていたプレパックドコン クリートの章には、グラウト材に関する規定は詳細に 書かれていたが、粗骨材に関しては明確に規定されて いなかった. そこで本研究では, 再生砕石や鉄道の廃棄 バラストのような, 品質の良くない石を粗骨材として 用いた場合の、プレパックドコンクリートの強度及び 耐久性について検討した.

2.供試体概要

本研究の計画配合を表 1 に示す. 比較対象として普通コンクリートも作製した. 使用した骨材を表 2 に示す. 再生骨材 RC-40, バラストの他, 普通粗骨材として C-40 を用いた. 骨材ふるい分け試験の結果を図 2 に示す. 点線で囲まれた部分が JIS の定める範囲で, 一般にはこの範囲内に収まる粗骨材が, コンクリートの優れた強度と耐久性に必要とされている. なお, プレパックドコンクリートでは, モルタルの充填性を向上させるために, 粒径 10mm 以下の骨材はカットした.

3.試験結果

図3に圧縮強度試験結果を、図4に透気試験結果を示す.普通コンクリートにおいては、C-40供試体の強度が最も大きくなり、プレパックドコンクリートにおいてはどの骨材を用いても同程度の強度であった.また透気試験結果において、普通コンクリートではRC-40供試体の透気係数が最も大きかった(空気が通りやす

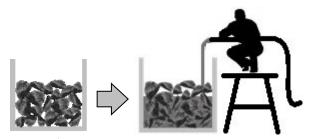


図1 プレパックドコンクリートの作製手順

表	1	計	画	配	合

種類	使用骨材	w/c	s/a	単位水量	スラグ置換率	フレッシュ性状		
				kg/m ³		slump	Air	flow
						(cm)	(%)	(mm)
普通	C-40		48	170	40%	10.5	2.5	_
	バラスト			170	40%	13.5	3.4	-
	RC-40	45		170	40%	15.5	3.8	_
プレパッ つド	C-40	43	21	※ここで「普通」コン				310
	バラスト			クリ- 置換	307			
	RC-40			ンクリートと定義する。				310

表 2 骨材測定值一覧

	表乾密度 g/cm ³	粒度分布	比表面積 cm²/g	吸水率	実績率
C-40	2.56	良	3.11	2.2%	58.3%
バラスト	2.68	不良	1.63	1.2%	58.1%
RC-40	2.39	良	2.69	5.0%	58.2%

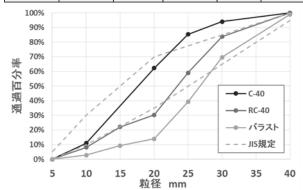


図2 骨材ふるい分け試験結果

い)のに対し、プレパックドコンクリートではバラスト供試体の透気係数が最も大きくなった.

4.強度・耐久性の違いを発生させた要因

硬化コンクリート内部の空隙率をアルキメデス試験

により測定した. 試験結果を表3に示す. RC-40の空隙 率が突出して大きいが, アルキメデス試験の性質上, 骨材の吸水率が結果に影響してくる. これを考慮すると, C-40, バラスト, RC-40で空隙率に大きな差はない. また, モルタル・グラウト材の配合も同じ為, 供試体間で大きく異なるのは骨材の種類のみである. よって供試体間の結果の差は骨材に起因していると言える.

5.<u>考察</u>

コンクリート供試体の透気係数と割裂引張強度の関係性を図5に示す.既往の研究より¹⁾,コンクリート中を透過する空気の多くは遷移帯(骨材とペーストとの間の脆弱な部分)を通る為,もし透気係数と割裂引張強度に相関があれば,コンクリート強度は遷移帯に起因すると言える.図5より,普通コンクリートの透気係数は割裂引張強度に依存しないが,プレパックドコンクリートでは両者に高い相関が認められる.これは,プレパックドコンクリートの強度が遷移帯に起因している為と考えられる.表3に示した単位グラウトに対する空隙率の割合からも,プレパックドコンクリートではモルタルに対して空隙が多いと言える.

グラウト材は骨材間に注入された後膨張するため、普通コンクリートに比べて遷移帯厚さは小さくなると考えられる.しかし、プレパックドコンクリートは型枠に骨材を敷き詰める為、図6のように、骨材と骨材が触れ合うほど密着している.実際に既往の研究²⁾より供試体中の骨材間の距離を概算できるが、表3に示すように、プレパックドコンクリートの骨材間距離は、普通コンクリートに比べて1/2以下である.そのため、骨材一つ一の遷移帯は小さくても、それらは密着しており、空気の通り道ができやすいと考えられる.

6.結論

プレパックドコンクリートの強度・耐久性は骨材そのものではなく、骨材周囲の遷移帯部分に依存する. プレパックドコンクリートの骨材周囲を解析し、その特徴や普通コンクリートとの違いを解明することができれば、プレパックドコンクリートのみならず、s/a の小さな普通コンクリートにおいても、より高強度、高耐久性のコンクリートを作ることができる可能性がある.

[参考文献]

1)加藤佳孝, 魚本健人: 構成材料の空間的特性を考慮したコンクリートの有効拡散係数の予測モデル, コンク

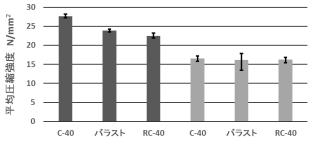


図 3 圧縮強度試験結果

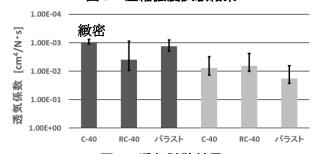


図 4 透気試験結果

表3 空隙率・骨材間距離まとめ

	普通			プレパックド		
	C-40	バラスト	RC-40	C-40	バラスト	RC-40
空隙率	10.2%	10.9%	12.7%	7.5%	7.4%	12.8%
吸水率補正値	9.4%	10.5%	11.0%	6.2%	6.7%	9.9%
単位グラウト材 体積空隙率	18.4%	19.9%	23.2%	21.8%	21.3%	39.8%
骨材間距離mm	8.3	16.4	14.0	3.6	7.2	6.2

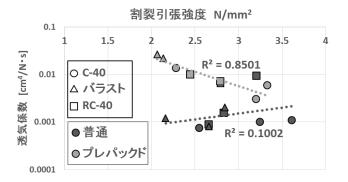


図 5 透気係数と割裂引張強度の対応表

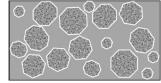


図 6 普通コンクリート(左)とプレパックドコン クリート(右)のイメージ図

リート工学論文集,第16巻第1号,2015.1 2)加藤 佳孝,西村 次男,魚本 健人:骨材周囲の遷移 帯厚さおよび空隙率の簡易算定手法の提案,63巻 1 号 p.308-315,2009 年

Supported by 日鉄住金高炉セメント&西武建設